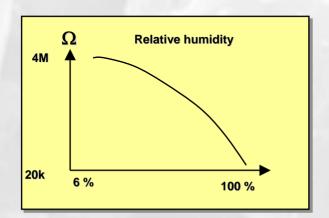
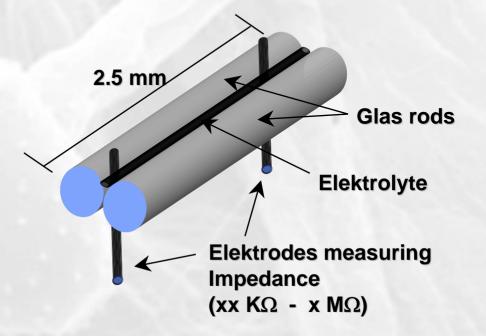


Theory of Water Activity (a_w)



Humidity measurement cell

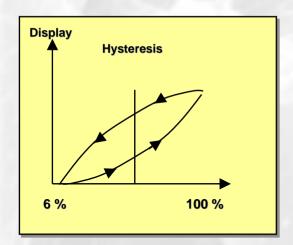
by **NOVASINA**


Principle

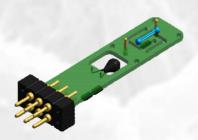
- Electrolyte absorbs and evaporates humidity according to its surrounding
- ✓ Absorption of humidity leads to increasing volume and to substantially decreasing impedance
- Small changes are easily measurable

Design

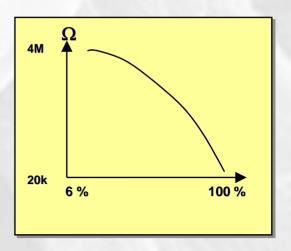
- Microtechnic design for fast response
- ☑ Good reproducibility in quantities of less then 10'000 pcs per year
- ✓ Optimal containment around the sensor element



Advantages / High accuracy


Neglect able Hysteresis **Dew protection**

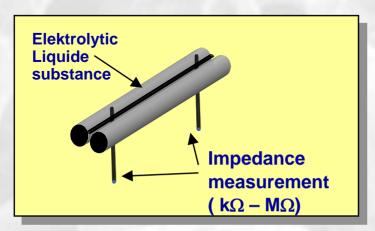
Simple measurement



Hysteresis is neglectable.

Electrolyte has no
absorptive effects

New materials and a heated probe prevents condensation on the sensor



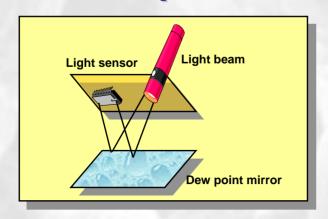
A small increase in humidity leads to a substantial increase in impedance

The humidity/aw measurement element

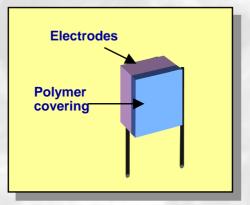
Resistive Electrolyte Cell

- directly measuring the a_w-value
- virtually hysteresis-free
- accurate to 0.003a_w (0.3%rh), from below
 0.03a_w up to 1.00a_w
- excellent repeatability of **0.002a**_w (0.2%rh)
- very easy and simple to change a calibrated measurement element (full accuracy)
- simple to calibrate the aw-system with saturated salt solutions

Function:


Liquid electrolyte changes resistance when the humidity around is changed

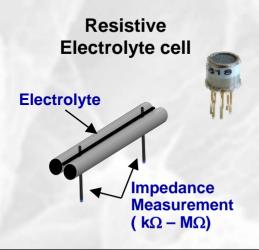
The dew point measurement method

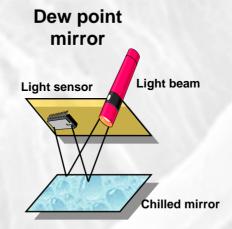

Function:
Optical identification of condensation on mirror temperature

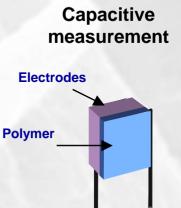
- needs a lot of electronics and control tools
- is not easy to handle and maintain (daily mirror cleaning)
- indirect measurement; gets a result by calculating the a_w from both, mirror dew point and sample temperature
- tremendous errors can be caused by volatiles (eg. alcohols!) as well as from sample surface colour and structure, which influence the infrared surface temperature measurement
- results are sometimes calculated too fast, so repeated measurements are recommended and frequent mirror cleaning is advisable

The humidity/aw measurement element

Capacitive measurement


Function:


Polymer expands with increasing humidity, thus changing capacitance


- easy and simple to handle
- quick reading of (+/- 0.04-0.05 a_w)
- directly measuring rh, have a physically given hysteresis of min. 1.5%rh (0.015a_w)
- "second sorption effect" in the high range: they absorb additional water molecules, which leads to a higher reading
- Problematic against chemical contamination

How to measure aw and rh in air?

Function	Liquide electrolyte changes resistance when the humidity around is changed	Optical identification of condensation on mirror temperature	Polymer expands with increasing humidity, thus changing capacitance
+	Precision, reproducibilityAccuracyNo meas. hysteresis	PrecisionSpeed	RobustMass production (commodity)
•	 Limited temp. range (-20+80°C) Protection against chemical gases 	 Costs Cleaning Service, maintenance Interaction of chemical gases 	 Hysteresis and irreversible condensation Less accuracy spec. in high humidity range